Translate

Wednesday 16 December 2015

First British Astronaut to the ISS, American, Russian and Briton Join International Space Station Crew

Hatches between the International Space Station and an arriving Soyuz spacecraft opened at 2:58 p.m. EST Tuesday, signaling the arrival of three new crew members, including NASA astronaut Tim Kopra. They will join other residents on the station to continue important research that advances NASA's journey to Mars, while making discoveries that can benefit all of humanity.
Kopra, Russian Federal Space Agency (Roscosmos) cosmonaut Yuri Malenchenko and ESA (European Space Agency) astronaut Tim Peake launched from the Baikonur Cosmodrome in Kazakhstan at 6:03 a.m. (5:03 p.m. in Baikonur) and, after orbiting Earth four times, manually docked to the station at 12:33 p.m.

The arrival of Kopra, Malenchenko and Peake returns the station's crew complement to six. The three join Expedition 46 Commander Scott Kelly of NASA and Flight Engineers Sergey Volkov and Mikhail Kornienko of Roscosmos. During more than five months on humanity’s only microgravity laboratory, the Expedition 46 crew members will conduct more than 250 science investigation in fields including biology, Earth science, human research, physical sciences and technology development.


Kopra, Malenchenko and Peake will remain aboard the station until early June 2016. Kelly and Kornienko will return to Earth at the conclusion of their one-year mission on March 1, 2016, along with Volkov. The pair will have spent 340 consecutive days living and working in space to advance understanding of the medical, psychological and biomedical challenges astronauts face during long duration spaceflight, in addition to developing countermeasures to reverse those effects.

Ongoing station research also includes the Microbial Payload Tracking Series project, which uses microbial analysis techniques to establish a census of the microorganisms living on surfaces and in the atmosphere of the space station. Along with crew members and experimental payloads, the space station is home to a variety of microbes, which are a cleaning nuisance and potentially threatening to crew health and station equipment. Analyzing these microbes can help determine whether some are more virulent in space, and which genetic changes might be involved in this response. Results from the investigation can be used to evaluate cleaning strategies, and to mitigate microbe-related risks to crew health and spacecraft system performance.

The crew members are scheduled to receive several cargo spacecraft -- including multiple U.S. commercial resupply vehicles from SpaceX and Orbital ATK -- each delivering tons of food, fuel, supplies and research.

SpaceX will deliver on its eighth commercial resupply services mission an important technology project that could help drive future exploration. Developed under a public-private partnership, the Bigelow Expandable Activity Module (BEAM) is an expandable habitat technology demonstration for the International Space Station. Expandable habitats can greatly decrease the amount of transport volume for future space missions, weighing less and taking up less room on a rocket. These habitats have the potential to provide a comfortable area for astronauts to live and work, as well as a varying degree of protection from solar and cosmic radiation, space debris and other elements of the space environment. Highly reliable habitation systems will be essential to keep future crews healthy and productive in the deep-space environment during missions in lunar orbit where the systems will be validated for future missions to Mars that could last as long as 1,100 days.

For 15 years, humans have been living continuously aboard the station to advance scientific knowledge and demonstrate new technologies, making research breakthroughs not possible on Earth that also will enable long-duration human and robotic exploration into deep space. A truly global endeavor, more than 200 people from 15 countries have visited the unique microgravity laboratory that has hosted more than 1,700 research investigations from researchers in more than 80 countries.

Tuesday 1 December 2015

SOHO Celebrates 20 Years of Space-based Science



After 20 years in space, ESA and NASA’s Solar and Heliospheric Observatory, or SOHO, is still going strong. Originally launched in 1995 to study the sun and its influence out to the very edges of the solar system, SOHO revolutionized this field of science, known as heliophysics, providing the basis for nearly 5,000 scientific papers. SOHO also found an unexpected role as the greatest comet hunter of all time—reaching 3,000 comet discoveries in September 2015.

-Dr. Joe Gurman of NASA's Goddard Space Flight Center provides commentary on selected shots from SOHO's 20 years in space-



































Credits
Genna Duberstein (USRA): Producer
Scott Wiessinger (USRA): Producer
Joe Gurman (NASA/GSFC): Scientist
Bernhard Fleck (ESA): Scientist

Courtesy of NASA

Monday 30 November 2015

Water World

Although Enceladus and Saturn's rings are largely made up of water ice, they show very different characteristics. The small ring particles are too tiny to retain internal heat and have no way to get warm, so they are frozen and geologically dead. Enceladus, on the other hand, is subject to forces that heat its interior to this very day. This results in its famous south polar water jets, which are just visible above the moon’s dark, southern limb, along with a sub-surface ocean.

Recent work by Cassini scientists suggests that Enceladus (313 miles or 504 kilometers across) has a global ocean of liquid water under its surface. This discovery increases scientists' interest in Enceladus and the quest to understand the role of water in the development of life in the solar system. (For more on the sub-surface ocean, see this story.)

This view looks toward the unilluminated side of the rings from about 0.3 degrees below the ring plane. The image was taken in visible light with the Cassini spacecraft narrow-angle camera on July 29, 2015.

The view was acquired at a distance of approximately 630,000 miles (1.0 million kilometers) from Enceladus and at a Sun-Enceladus-spacecraft, or phase angle of 155 degrees. Image scale is 4 miles (6 kilometers) per pixel.

The Cassini mission is a cooperative project of NASA, ESA (the European Space Agency) and the Italian Space Agency. The Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the mission for NASA's Science Mission Directorate, Washington. The Cassini orbiter and its two onboard cameras were designed, developed and assembled at JPL. The imaging operations center is based at the Space Science Institute in Boulder, Colorado.

For more information about the Cassini-Huygens mission visit http://saturn.jpl.nasa.gov or http://www.nasa.gov/cassini . The Cassini imaging team homepage is at http://ciclops.org .

Credit: NASA/JPL-Caltech/Space Science Institute

Friday 25 September 2015

Shoot the Supermoon Eclipse like a Pro

Much of the United States will be treated to a rare combination supermoon and lunar eclipse on Sunday night, Sept. 27. Since the next celestial event of this kind won’t happen until 2033, you might want to preserve the memory with a great photo.
Enter Bill Ingalls, NASA’s senior photographer and a fixture at NASA Headquarters, with a salt-and-pepper ponytail and a ready smile. Bill has traveled all over the world for more than 25 years photographing missions for NASA, but he can also be found right in his own backyard – the DC area – anytime there’s a supermoon, meteor shower or other eye candy in the heavens.

Bill’s #1 tip for capturing that great lunar photo: “Don’t make the mistake of photographing the moon by itself with no reference to anything,” he said. “I’ve certainly done it myself, but everyone will get that shot. Instead, think of how to make the image creative—that means tying it into some land-based object. It can be a local landmark or anything to give your photo a sense of place.”

Ingalls goes to great lengths to scout out the perfect vantage point to juxtapose the moon with various Washington monuments. “It means doing a lot of homework. I use Google Maps and other apps – even a compass -- to plan where to get just the right angle at the right time.”  He often scouts locations a day or more in advance, getting permission to access rooftops or traveling to remote areas to avoid light pollution.

A slight miscalculation can result in a mad scramble; he recalls seeing hundreds of photographers who set tripods hundreds of yards away for a supermoon shot from Washington’s Iwo Jima monument. “I thought my calculations were wrong, but – sure enough – the moon popped up right where I expected, and then came the stampede,” he chuckled.

You don’t have to live near an iconic landmark or talk your way onto a rooftop to get the perfect shot. Instead, work with what you have. Ingalls trekked to Shenandoah National Park in 2009 to photograph Comet Lulin and faced a challenge. “I had just basic equipment and saw all these people with great telescopes making a picture I could never get. So what could I do differently?” Ingalls aimed his long lens between the trees, using the red light of his headlamp to paint the forest with a long exposure. The result was magical, with National Geographic naming his comet image one of the top 10 space photos of the year.

Ingalls says the Sep. 27 supermoon eclipse can be a great family activity, since it’s not too much past bedtime. “I think this would be a lot of fun to do with kids, if nothing else, to just have them witness it and talk about what’s taking place.” He recommends personalizing the experience by using people in the shot. “There are lots of great photos of people appearing to be holding the moon in their hand and that kind of thing. You can get really creative with it,” he said.

Unlike a meteor shower or an ISS pass, time is on your side on Sep. 27. The eclipse will last more than an hour, peaking at 10:47 p.m. EDT. So you have lots of time to experiment with different locations, exposure times and foregrounds.

Is it hopeless to attempt a supermoon eclipse with a smartphone camera? Ingalls says, “It’s all relative. For me, it would be maddening and frustrating--yet it may be a good challenge, actually. You’re not going to get a giant moon in your shot, but you can do something more panoramic, including some foreground that’s interesting. Think about being in an urban area where it’s a little bit brighter.”

To get the right light balance of the moon on newer iPhones and other smartphones, “Tap the screen and hold your finger on the object (in this case, the moon) to lock the focus. Then slide your finger up or down to darken or lighten the exposure.”

For digital SLR photography, Ingalls uses the daylight white balance setting for capturing moonlight, since sunlight is being reflected. For those with longer lenses he advises, “Keep in mind that the moon is a moving object. It’s a balancing act between trying to get the right exposure and realizing that the shutter speed typically needs to be a lot faster.”

Ingalls will be traveling in Colorado during the upcoming eclipse, but – not surprisingly – “I’ll be bringing my equipment, so who knows?”

Tuesday 8 September 2015

Distorted Green Flash Sunset over Italy

This was one strange sunset. For one thing, the typically round Sun appeared distorted, geometrically, and multiply layered. For another, some of these layers appeared unusually green. The Sun, of course, was just fine -- its odd appearance was caused entirely by its light refracting in the Earth's atmosphere. When layers of the Earth's atmosphere are unusually warm, layers of the Sun may appear distorted or even seen multiple times. The effect is most strong nearest sunrise and sunset when terrestrial inversion layers occupy distinct altitudes above the horizon. Different colors of the Sun may also become deflected by significantly different amounts, so that the uppermost superior image may appear momentarily green -- a phenomenon known as a green flash. This
image was taken in February from Porto Venere, Italy, with San Pietro church situated in the foreground.

Thursday 3 September 2015

Pointy stars and peculiar galaxies Arp 159 and NGC 4725

Pointy stars and peculiar galaxies span this cosmic snapshot, a telescopic view toward the well-groomed constellation Coma Berenices. Bright enough to show off diffraction spikes, the stars are in the foreground of the scene, well within our own Milky Way. But the two prominent galaxies lie far beyond our own, some 41 million light-years distant. Also known as NGC 4747, the smaller distorted galaxy at left is the 159th entry in the Arp Atlas of Peculiar Galaxies, with extensive tidal tails indicative of strong gravitational interactions in its past. At about a 100,000 light-years across, its likely companion on the right is the much larger NGC 4725. At first glance NGC 4725 appears to be a normal spiral galaxy, its central region dominated by the yellowish light of cool, older stars giving way to younger hot blue star clusters along dusty spiral outskirts. Still, NGC 4725 does look a little odd with only one main spiral arm.

Monday 31 August 2015

NASA’s New Horizons Team Selects Potential Kuiper Belt Flyby Target

NASA has selected the potential next destination for the New Horizons mission to visit after its historic July 14 flyby of the Pluto system. The destination is a small Kuiper Belt object (KBO) known as 2014 MU69 that orbits nearly a billion miles beyond Pluto.
This remote KBO was one of two identified as potential destinations and the one recommended to NASA by the New Horizons team.  Although NASA has selected 2014 MU69 as the target, as part of its normal review process the agency will conduct a detailed assessment before officially approving the mission extension to conduct additional science.

“Even as the New Horizon’s spacecraft speeds away from Pluto out into the Kuiper Belt, and the data from the exciting encounter with this new world is being streamed back to Earth, we are looking outward to the next destination for this intrepid explorer,” said John Grunsfeld, astronaut and chief of the NASA Science Mission Directorate at the agency headquarters in Washington. “While discussions whether to approve this extended mission will take place in the larger context of the planetary science portfolio, we expect it to be much less expensive than the prime mission while still providing new and exciting science.”

Like all NASA missions that have finished their main objective but seek to do more exploration, the New Horizons team must write a proposal to the agency to fund a KBO mission. That proposal – due in 2016 – will be evaluated by an independent team of experts before NASA can decide about the go-ahead.

Early target selection was important; the team needs to direct New Horizons toward the object this year in order to perform any extended mission with healthy fuel margins. New Horizons will perform a series of four maneuvers in late October and early November to set its course toward 2014 MU69 – nicknamed “PT1” (for “Potential Target 1”) – which it expects to reach on January 1, 2019. Any delays from those dates would cost precious fuel and add mission risk.

“2014 MU69 is a great choice because it is just the kind of ancient KBO, formed where it orbits now, that the Decadal Survey desired us to fly by,” said New Horizons Principal Investigator Alan Stern, of the Southwest Research Institute (SwRI) in Boulder, Colorado. “Moreover, this KBO costs less fuel to reach [than other candidate targets], leaving more fuel for the flyby, for ancillary science, and greater fuel reserves to protect against the unforeseen.”

New Horizons was originally designed to fly beyond the Pluto system and explore additional Kuiper Belt objects. The spacecraft carries extra hydrazine fuel for a KBO flyby; its communications system is designed to work from far beyond Pluto; its power system is designed to operate for many more years; and its scientific instruments were designed to operate in light levels much lower than it will experience during the 2014 MU69 flyby.”

The 2003 National Academy of Sciences’ Planetary Decadal Survey (“New Frontiers in the Solar System”) strongly recommended that the first mission to the Kuiper Belt include flybys of Pluto and small KBOs, in order to sample the diversity of objects in that previously unexplored region of the solar system. The identification of PT1, which is in a completely different class of KBO than Pluto, potentially allows New Horizons to satisfy those goals.

But finding a suitable KBO flyby target was no easy task. Starting a search in 2011 using some of the largest ground-based telescopes on Earth, the New Horizons team found several dozen KBOs, but none were reachable within the fuel supply available aboard the spacecraft.

The powerful Hubble Space Telescope came to the rescue in summer 2014, discovering five objects, since narrowed to two, within New Horizons’ flight path. Scientists estimate that PT1 is just under 30 miles (about 45 kilometers) across; that’s more than 10 times larger and 1,000 times more massive than typical comets, like the one the Rosetta mission is now orbiting, but only about 0.5 to 1 percent of the size (and about 1/10,000th the mass) of Pluto. As such, PT1 is thought to be like the building blocks of Kuiper Belt planets such as Pluto.
Unlike asteroids, KBOs have been heated only slightly by the Sun, and are thought to represent a well preserved, deep-freeze sample of what the outer solar system was like following its birth 4.6 billion years ago.

“There’s so much that we can learn from close-up spacecraft observations that we’ll never learn from Earth, as the Pluto flyby demonstrated so spectacularly,” said New Horizons science team member John Spencer, also of SwRI. “The detailed images and other data that New Horizons could obtain from a KBO flyby will revolutionize our understanding of the Kuiper Belt and KBOs.”

The New Horizons spacecraft – currently 3 billion miles [4.9 billion kilometers] from Earth – is just starting to transmit the bulk of the images and other data, stored on its digital recorders, from its historic July encounter with the Pluto system. The spacecraft is healthy and operating normally.

New Horizons is part of NASA’s New Frontiers Program, managed by the agency’s Marshall Space Flight Center in Huntsville, Ala. The Johns Hopkins University Applied Physics Laboratory in Laurel, Md., designed, built, and operates the New Horizons spacecraft and manages the mission for NASA’s Science Mission Directorate. SwRI leads the science mission, payload operations, and encounter science planning.


Saturday 29 August 2015

8 Crazy Mysteries You Wont Believe are REAL

*Please note that viewer discretion is advised*
For The Dyatlov Pass Incident ONLY.........

I hope you enjoy this effort, Took me all week to do this one.. Please let me know what you think and were you would like to see improvements in future.. Thank you for watching

Sunday 9 August 2015

Hubble Finds a Little Gem

This colorful bubble is a planetary nebula called NGC 6818, also known as the Little Gem Nebula. It is located in the constellation of Sagittarius (The Archer), roughly 6,000 light-years away from us. The rich glow of the cloud is just over half a light-year across — humongous compared to its tiny central star — but still a little gem on a cosmic scale.

When stars like the sun enter "retirement," they shed their outer layers into space to create glowing clouds of gas called planetary nebulae. This ejection of mass is uneven, and planetary nebulae can have very complex shapes. NGC 6818 shows knotty filament-like structures and distinct layers of material, with a bright and enclosed central bubble surrounded by a larger, more diffuse cloud.

Scientists believe that the stellar wind from the central star propels the outflowing material, sculpting the elongated shape of NGC 6818. As this fast wind smashes through the slower-moving cloud it creates particularly bright blowouts at the bubble’s outer layers.

Hubble previously imaged this nebula back in 1997 with its Wide Field Planetary Camera 2, using a mix of filters that highlighted emission from ionized oxygen and hydrogen. This image, while from the same camera, uses different filters to reveal a different view of the nebula.

Saturday 1 August 2015

Blue Moon Over Washington

A second full moon for the month of July is seen next to the dome of the U.S. Capitol on Friday, July 31, 2015 in Washington. In recent years, people have been using the name Blue Moon for the second of two full moons in a single calendar month. An older definition of Blue Moon is that it’s the third of four full moons in a single season

Once In A Blue Moon - Blue Moon Of July 31st 2015

"Once In A Blue Moon" There i said it!

Did anyone capture and pics of last nights full moon.. Really cloudy in Scotland last night.. Pictured.. The moon rises over Glastonbury Tor, Somerset, England on July 30, 2015..The last time this happened was in 2012 and there isn’t due another until 2018,

So what is a "BLUE MOON"?.
Most definitions say that a blue moon is the second full moon in a calendar month. This year, July’s first full moon was on the 2nd. Because there are 29.5 days between full moons (known as the lunar month), here we are again at full moon on 31st.
However, this definition is the result of a simplification made by amateur astronomer James Hugh Pruett writing in the 3 March 1946 issue of Sky & Telescope magazine. He wrote about blue moons, explaining that they occur seven times every 19 years because the lunar month is shorter than most of our familiar calendrical months. So sometimes there are 13 full moons in a year instead of 12. On these occasions, he concluded, “This gives 11 months with one full moon each and one with two. This second in a month, so I interpret it, was called Blue Moon.”
Simple but wrong. The term “blue moon” was introduced by the Maine Farmers’ Almanac, sometime after 1800. In their definition, the name was given to the third full moon in a season containing four. So, it could just as well be the first full moon in a month as the second.
We are probably familiar with the term “harvest moon”. This is the name given to the late September/early October full moon because it was said to light farmers’ fields allowing them to work into the night at harvest time.
In fact, all the full moons have names. They derive from the Native American Algonquin people. Aligned to the month they fall in, they are:
Advertisement
January: the Wolf Moon, February: the Snow Moon, March: the Worm Moon, April: the Pink Moon, May: the Flower Moon, June: the Strawberry Moon, July: the Buck Moon, August: the Sturgeon Moon, September: the Harvest Moon, October: the Hunter’s Moon, November: the Beaver Moon, December: the Cold Moon.
Because the last full moon of a season usually falls around the summer or winter solstice, or the spring or autumnal equinox, the blue moon slots in earlier to keep the sequence on track. Confused? Perhaps now we have some sympathy with Pruett’s definition. Indeed it has entered widespread use.
And what about that phrase ‘once in blue moon’. Many pieces covering tonight’s blue moon call it rare and say that it is where the famous phrase comes from.

Thursday 23 July 2015

NASA's Kepler mission has confirmed the first near-Earth-size planet in the “habitable zone” around a sun-like star.

NASA's Kepler mission has confirmed the first near-Earth-size planet in the “habitable zone” around a sun-like star. This discovery and the introduction of 11 other new small habitable zone candidate planets mark another milestone in the journey to finding another “Earth.”

The newly discovered Kepler-452b is the smallest planet to date discovered orbiting in the habitable zone -- the area around a star where liquid water could pool on the surface of an orbiting planet -- of a G2-type star, like our sun. The confirmation of Kepler-452b brings the total number of confirmed planets to 1,030.

"On the 20th anniversary year of the discovery that proved other suns host planets, the Kepler exoplanet explorer has discovered a planet and star which most closely resemble the Earth and our Sun," said John Grunsfeld, associate administrator of NASA’s Science Mission Directorate at the agency’s headquarters in Washington. “This exciting result brings us one step closer to finding an Earth 2.0."

Kepler-452b is 60 percent larger in diameter than Earth and is considered a super-Earth-size planet. While its mass and composition are not yet determined, previous research suggests that planets the size of Kepler-452b have a good chance of being rocky.

While Kepler-452b is larger than Earth, its 385-day orbit is only 5 percent longer. The planet is 5 percent farther from its parent star Kepler-452 than Earth is from the Sun. Kepler-452 is 6 billion years old, 1.5 billion years older than our sun, has the same temperature, and is 20 percent brighter and has a diameter 10 percent larger.

“We can think of Kepler-452b as an older, bigger cousin to Earth, providing an opportunity to understand and reflect upon Earth’s evolving environment," said Jon Jenkins, Kepler data analysis lead at NASA's Ames Research Center in Moffett Field, California, who led the team that discovered Kepler-452b. "It’s awe-inspiring to consider that this planet has spent 6 billion years in the habitable zone of its star; longer than Earth. That’s substantial opportunity for life to arise, should all the necessary ingredients and conditions for life exist on this planet.”

To help confirm the finding and better determine the properties of the Kepler-452 system, the team conducted ground-based observations at the University of Texas at Austin's McDonald Observatory, the Fred Lawrence Whipple Observatory on Mt. Hopkins, Arizona, and the W. M. Keck Observatory atop Mauna Kea in Hawaii. These measurements were key for the researchers to confirm the planetary nature of Kepler-452b, to refine the size and brightness of its host star and to better pin down the size of the planet and its orbit.

The Kepler-452 system is located 1,400 light-years away in the constellation Cygnus. The research paper reporting this finding has been accepted for publication in The Astronomical Journal.

In addition to confirming Kepler-452b, the Kepler team has increased the number of new exoplanet candidates by 521 from their analysis of observations conducted from May 2009 to May 2013, raising the number of planet candidates detected by the Kepler mission to 4,696. Candidates require follow-up observations and analysis to verify they are actual planets.

Twelve of the new planet candidates have diameters between one to two times that of Earth, and orbit in their star's habitable zone. Of these, nine orbit stars that are similar to our sun in size and temperature.

“We've been able to fully automate our process of identifying planet candidates, which means we can finally assess every transit signal in the entire Kepler dataset quickly and uniformly,” said Jeff Coughlin, Kepler scientist at the SETI Institute in Mountain View, California, who led the analysis of a new candidate catalog. “This gives astronomers a statistically sound population of planet candidates to accurately determine the number of small, possibly rocky planets like Earth in our Milky Way galaxy.”

These findings, presented in the seventh Kepler Candidate Catalog, will be submitted for publication in the Astrophysical Journal. These findings are derived from data publically available on the NASA Exoplanet Archive.

Scientists now are producing the last catalog based on the original Kepler mission’s four-year data set. The final analysis will be conducted using sophisticated software that is increasingly sensitive to the tiny telltale signatures of Earth-size planets.

Ames manages the Kepler and K2 missions for NASA’s Science Mission Directorate. NASA's Jet Propulsion Laboratory in Pasadena, California, managed Kepler mission development. Ball Aerospace & Technologies Corporation operates the flight system with support from the Laboratory for Atmospheric and Space Physics at the University of Colorado in Boulder.

Tuesday 21 July 2015

New Horizons Captures Two of Pluto's Smaller Moons

Pluto has five known moons. In order of distance from Pluto they are: Charon, Styx, Nix, Kerberos, and Hydra.

While Pluto’s largest moon Charon has grabbed most of the lunar spotlight, two of Pluto’s smaller and lesser-known satellites are starting to come into focus via new images from the New Horizons spacecraft.  Nix and Hydra – the second and third moons to be discovered – are approximately the same size, but their similarity ends there.

New Horizons’ first color image of Pluto’s moon Nix, in which colors have been enhanced, reveals an intriguing  region on the jelly bean-shaped satellite, which is estimated to be 26 miles (42 kilometers) long and 22 miles (36 kilometers) wide.

Although the overall surface color of Nix is neutral grey in the image, the newfound region has a distinct red tint.  Hints of a bull’s-eye pattern lead scientists to speculate that the reddish region is a crater. “Additional compositional data has already been taken of Nix, but is not yet downlinked. It will tell us why this region is redder than its surroundings,” said mission scientist Carly Howett, Southwest Research Institute, Boulder, Colorado. She added, “This observation is so tantalizing, I’m finding it hard to be patient for more Nix data to be downlinked.”

Meanwhile, the sharpest image yet received from New Horizons of Pluto’s satellite Hydra shows that its irregular shape resembles the state of Michigan. The new image was made by the Long Range Reconnaissance Imager (LORRI) on July 14, 2015 from a distance of 143,000 miles (231,000 kilometers), and shows features as small as 0.7 miles (1.2 kilometers) across. There appear to be at least two large craters, one of which is mostly in shadow. The upper portion looks darker than the rest of Hydra, suggesting a possible difference in surface composition. From this image, mission scientists have estimated that Hydra is 34 miles (55 kilometers) long and 25 miles (40 kilometers) wide. Commented mission science collaborator Ted Stryk of Roane State Community College in Tennessee, “Before last week, Hydra was just a faint point of light, so it's a surreal experience to see it become an actual place, as we see its shape and spot recognizable features on its surface for the first time.”

Images of Pluto’s most recently discovered moons, Styx and Kerberos, are expected to be transmitted to Earth no later than mid-October.

Nix and Hydra were both discovered in 2005 using Hubble Space Telescope data by a research team led by New Horizons project scientist Hal Weaver, Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland. New Horizons’ findings on the surface characteristics and other properties of Nix and Hydra will help scientists understand the origins and subsequent history of Pluto and its moons.

Tuesday 14 July 2015

New Horizons Fly-By: Pluto and Charon Shine in False Color

New Horizons has obtained impressive new images of Pluto and its large moon Charon that highlight their compositional diversity. These are not actual color images of Pluto and Charon—they are shown here in exaggerated colors that make it easy to note the differences in surface material and features on each planetary body.

The images were obtained using three of the color filters of the “Ralph” instrument on July 13 at 3:38 am EDT. New Horizons has seven science instruments on board the spacecraft—including “Ralph” and “Alice”, whose names are a throwback to the “Honeymooners,” a popular 1950s sitcom.

“These images show that Pluto and Charon are truly complex worlds.  There's a whole lot going on here,” said New Horizons co-investigator Will Grundy, Lowell Observatory, Flagstaff, Arizona.  “Our surface composition team is working as fast as we can to identify the substances in different regions on Pluto and unravel the processes that put them where they are.”

The color data helps scientists understand the molecular make-up of ices on the surfaces of Pluto and Charon, as well as the age of geologic features such as craters. They can also tell us about surface changes caused by space “weather,” such as radiation.

The new color images reveal that the “heart” of Pluto actually consists of two remarkably different-colored regions.  In the false-color image, the heart consists of a western lobe shaped like an ice cream cone that appears peach color in this image.  A mottled area on the right (east) side looks bluish.  A mid-latitude band appears in shades ranging from pale blue through red.  Even within the northern polar cap, in the upper part of the image, various shades of yellow-orange indicate subtle compositional differences. This image was obtained using three of the color filters of the Ralph instrument on July 13 at 3:38 am EDT and received on the ground on at 12:25 pm.

Charon is Just as Colorful

The surface of Charon is viewed using the same exaggerated color. The red on the dark northern polar cap of Charon is attributed to hydrocarbon and other molecules, a class of chemical compounds called tholins. The mottled colors at lower latitudes point to the diversity of terrains on Charon.  This image was obtained using three of the color filters of the Ralph instrument on July 13 at 3:38 am EDT and received on the ground on at 12:25 pm.

“We make these color images to highlight the variety of surface environments present in the Pluto system,” said Dennis Reuter, co-investigator with the New Horizons Composition Team. “They show us in an intuitive way that there is much still to learn from the data coming down.”

Due to the three-billion-mile distance to Pluto, data takes 4 ½ hours to come to Earth, even at the speed of light. It will take 16 months for all of New Horizons’ science data to be received, and the treasure trove from this mission will be studied for decades to come.

Image Caption: Pluto and Charon in False Color Show Compositional Diversity

This July 13, 2015, image of Pluto and Charon is presented in false colors to make differences in surface material and features easy to see. It was obtained by the Ralph instrument on NASA's New Horizons spacecraft, using three filters to obtain color information, which is exaggerated in the image.  These are not the actual colors of Pluto and Charon, and the apparent distance between the two bodies has been reduced for this side-by-side view.

The image reveals that the bright heart-shaped region of Pluto includes areas that differ in color characteristics. The western lobe, shaped like an ice-cream cone, appears peach color in this image. A mottled area on the right (east) appears bluish.  Even within Pluto's northern polar cap, in the upper part of the image, various shades of yellow-orange indicate subtle compositional differences.  

The surface of Charon is viewed using the same exaggerated color. The red on the dark northern polar cap of Charon is attributed to hydrocarbon materials including a class of chemical compounds called tholins. The mottled colors at lower latitudes point to the diversity of terrains on Charon.

This image was taken at 3:38 a.m. EDT on July 13, one day before New Horizons’ closest approach to Pluto.

Image Credit: NASA/APL/SwRI

At 7:49 AM EDT on Tuesday, July 14 New Horizons sped past Pluto at 30,800 miles per hour (49,600 kilometers per hour), with a suite of seven science instruments. As planned, New Horizons went incommunicado as it hurtled through the Pluto-Charon system busily gathering data. The New Horizons team will breathe a sigh of relief when New Horizons “phones home” at approximately 9:02 p.m. EDT on July 14. The mission to the icy dwarf planet completes the initial reconnaissance of the solar system.

Members of the New Horizons Science Team React

Members of the New Horizons science team react to seeing the spacecraft's last and sharpest image of Pluto before closest approach later in the day, Tuesday, July 14, 2015 at the Johns Hopkins University Applied Physics Laboratory (APL) in Laurel, Maryland.
Photo Credit: (NASA/Bill Ingalls)

NASA's Three-Billion-Mile Journey to Pluto Reaches Historic Encounter

Pluto nearly fills the frame in this image from the Long Range Reconnaissance Imager (LORRI) aboard NASA’s New Horizons spacecraft, taken on July 13, 2015 when the spacecraft was 476,000 miles (768,000 kilometers) from the surface. This is the last and most detailed image sent to Earth before the spacecraft’s closest approach to Pluto on July 14. The color image has been combined with lower-resolution color information from the Ralph instrument that was acquired earlier on July 13. This view is dominated by the large, bright feature informally named the “heart,” which measures approximately 1,000 miles (1,600 kilometers) across. The heart borders darker equatorial terrains, and the mottled terrain to its east (right) are complex. However, even at this resolution, much of the heart’s interior appears remarkably featureless—possibly a sign of ongoing geologic processes.
Credits: NASA/APL/SwRI
NASA’s New Horizons spacecraft is at Pluto.

After a decade-long journey through our solar system, New Horizons made its closest approach to Pluto Tuesday, about 7,750 miles above the surface -- roughly the same distance from New York to Mumbai, India – making it the first-ever space mission to explore a world so far from Earth.

“I’m delighted at this latest accomplishment by NASA, another first that demonstrates once again how the United States leads the world in space,” said John Holdren, assistant to the President for Science and Technology and director of the White House Office of Science and Technology Policy. “New Horizons is the latest in a long line of scientific accomplishments at NASA, including multiple missions orbiting and exploring the surface of Mars in advance of human visits still to come; the remarkable Kepler mission to identify Earth-like planets around stars other than our own; and the DSCOVR satellite that soon will be beaming back images of the whole Earth in near real-time from a vantage point a million miles away. As New Horizons completes its flyby of Pluto and continues deeper into the Kuiper Belt, NASA's multifaceted journey of discovery continues."

Members of the New Horizons science team react to seeing the spacecraft's last and sharpest image of Pluto before closest approach later in the day, Tuesday, July 14, 2015 at the Johns Hopkins University Applied Physics Laboratory in Laurel, Maryland.
Credits: NASA/Bill Ingalls
“The exploration of Pluto and its moons by New Horizons represents the capstone event to 50 years of planetary exploration by NASA and the United States," said NASA Administrator Charles Bolden. “Once again we have achieved a historic first. The United States is the first nation to reach Pluto, and with this mission has completed the initial survey of our solar system, a remarkable accomplishment that no other nation can match.”

Per the plan, the spacecraft currently is in data-gathering mode and not in contact with flight controllers at the Johns Hopkins University Applied Physical Laboratory (APL) in Laurel, Maryland. Scientists are waiting to find out whether New Horizons “phones home,” transmitting to Earth a series of status updates that indicate the spacecraft survived the flyby and is in good health. The “call” is expected shortly after 9 p.m. tonight.

The Pluto story began only a generation ago when young Clyde Tombaugh was tasked to look for Planet X, theorized to exist beyond the orbit of Neptune. He discovered a faint point of light that we now see as a complex and fascinating world.

"Pluto was discovered just 85 years ago by a farmer's son from Kansas, inspired by a visionary from Boston, using a telescope in Flagstaff, Arizona,” said John Grunsfeld, associate administrator for NASA's Science Mission Directorate in Washington. "Today, science takes a great leap observing the Pluto system up close and flying into a new frontier that will help us better understand the origins of the solar system.”

New Horizons’ flyby of the dwarf planet and its five known moons is providing an up-close introduction to the solar system's Kuiper Belt, an outer region populated by icy objects ranging in size from boulders to dwarf planets. Kuiper Belt objects, such as Pluto, preserve evidence about the early formation of the solar system.

New Horizons principal investigator Alan Stern of the Southwest Research Institute (SwRI) in Boulder, Colorado, says the mission now is writing the textbook on Pluto.

"The New Horizons team is proud to have accomplished the first exploration of the Pluto system,” Stern said. “This mission has inspired people across the world with the excitement of exploration and what humankind can achieve.”

New Horizons’ almost 10-year, three-billion-mile journey to closest approach at Pluto took about one minute less than predicted when the craft was launched in January 2006. The spacecraft threaded the needle through a 36-by-57 mile (60 by 90 kilometers) window in space -- the equivalent of a commercial airliner arriving no more off target than the width of a tennis ball.

Because New Horizons is the fastest spacecraft ever launched – hurtling through the Pluto system at more than 30,000 mph, a collision with a particle as small as a grain of rice could incapacitate the spacecraft. Once it reestablishes contact Tuesday night, it will take 16 months for New Horizons to send its cache of data – 10 years’ worth -- back to Earth.

New Horizons is the latest in a long line of scientific accomplishments at NASA, including multiple rovers exploring the surface of Mars, the Cassini spacecraft that has revolutionized our understanding of Saturn and the Hubble Space Telescope, which recently celebrated its 25th anniversary. All of this scientific research and discovery is helping to inform the agency’s plan to send American astronauts to Mars in the 2030’s.

“After nearly 15 years of planning, building, and flying the New Horizons spacecraft across the solar system, we’ve reached our goal,” said project manager Glen Fountain at APL “The bounty of what we’ve collected is about to unfold.”

APL designed, built and operates the New Horizons spacecraft and manages the mission for NASA’s Science Mission Directorate. SwRI leads the mission, science team, payload operations and encounter science planning. New Horizons is part of NASA’s New Frontiers Program, managed by the agency’s Marshall Space Flight Center in Huntsville, Alabama.

Follow the New Horizons mission on Twitter and use the hashtag #PlutoFlyby to join the conversation. Live updates also will be available on the mission Facebook page.

For more information on the New Horizons mission, including fact sheets, schedules, video and images, visit:

http://www.nasa.gov/newhorizons

and

http://solarsystem.nasa.gov/planets/plutotoolkit.cfm

Sunday 12 July 2015

New Horizons’ Last Portrait of Pluto’s Puzzling Spots

Three billion miles from Earth and just two and a half million miles from Pluto, NASA’s New Horizons spacecraft has taken its best image of four dark spots that continue to captivate.

The spots appear on the side of Pluto that always faces its largest moon, Charon—the face that will be invisible to New Horizons when the spacecraft makes its close flyby the morning of July 14. New Horizons principal investigator Alan Stern of the Southwest Research Institute, Boulder, Colorado, describes this image as “the last, best look that anyone will have of Pluto’s far side for decades to come.”

The spots are connected to a dark belt that circles Pluto’s equatorial region. What continues to pique the interest of scientists is their similar size and even spacing. “It’s weird that they’re spaced so regularly,” says New Horizons program scientist Curt Niebur at NASA Headquarters in Washington.  Jeff Moore of NASA’s Ames Research Center, Mountain View, California, is equally intrigued. “We can’t tell whether they’re plateaus or plains, or whether they’re brightness variations on a completely smooth surface.”

The large dark areas are now estimated to be 300 miles (480 kilometers) across, an area roughly the size of the state of Missouri.  In comparison with earlier images, we now see that the dark areas are more complex than they initially appeared, while the boundaries between the dark and bright terrains are irregular and sharply defined.

In addition to solving the mystery of the spots, the New Horizons Geology, Geophysics and Imaging team is interested in identifying other surface features such as impact craters, formed when smaller objects struck the dwarf planet. Moore notes, “When we combine images like this of the far side with composition and color data the spacecraft has already acquired but not yet sent to Earth, we expect to be able to read the history of this face of Pluto.”

When New Horizons makes its closest approach to Pluto in just three days, it will focus on the opposing or “encounter hemisphere” of the dwarf planet. On the morning of July 14, New Horizons will pass about 7,800 miles (12,500 kilometers) from the face with a large heart-shaped feature that’s captured the imagination of people around the world.

Image caption: New Horizons' last look at Pluto's Charon-facing hemisphere reveals intriguing geologic details that are of keen interest to mission scientists. This image, taken early the morning of July 11, 2015, shows newly-resolved linear features above the equatorial region that intersect, suggestive of polygonal shapes. This image was captured when the spacecraft was 2.5 million miles (4 million kilometers) from Pluto.

At 7:49 AM EDT on Tuesday, July 14 New Horizons will zip past Pluto at 30,800 miles per hour (49,600 kilometers per hour), with a suite of seven science instruments busily gathering data. The mission will complete the initial reconnaissance of the solar system with the first-ever look at the icy dwarf planet.

Follow the path of the spacecraft in coming days in real time with a visualization of the actual trajectory data, using NASA’s online EYES ON PLUTO

Saturday 11 July 2015

Hubble Looks at Stunning Spiral

This little-known galaxy, officially named J04542829-6625280, but most often referred to as LEDA 89996, is a classic example of a spiral galaxy. The galaxy is much like our own galaxy, the Milky Way. The disk-shaped galaxy is seen face on, revealing the winding structure of the spiral arms. Dark patches in these spiral arms are in fact dust and gas — the raw materials for new stars. The many young stars that form in these regions make the spiral arms appear bright and bluish.

The galaxy sits in a vibrant area of the night sky within the constellation of Dorado (The Swordfish), and appears very close to the Large Magellanic Cloud  — one of the satellite galaxies of the Milky Way.

The observations were carried out with the high resolution channel of Hubble’s Advanced Camera for Surveys.

Geology On Pluto

Pluto is coming into focus. As the robotic New Horizons spacecraft bears down on this unexplored world of the distant Solar System, new features on its surface are becoming evident. In the displayed image taken last Thursday and released yesterday, an unusual polygonal structure roughly 200 kilometers wide is visible on the left, while just below it relatively complex terrain runs diagonally across the dwarf planet. New Horizon's images and data on these structures will likely be studied for years to come in an effort to better understand the geologic history of Pluto and our Solar System. After suffering a troublesome glitch last week, New Horizons will make its historic flyby of Pluto and its moons on Tuesday.



Friday 10 July 2015

Pluto and Charon: New Horizons’ Dynamic Duo


New Horizons was about 3.7 million miles (6 million kilometers) from Pluto and Charon when it snapped this portrait late on July 8, 2015.
This is the same image of Pluto and Charon from July 8, 2015; color information obtained earlier in the mission from the Ralph instrument has been added.
Image of Pluto only from the New Horizons’ Long Range Reconnaissance Imager (LORRI), July 8, 2015. Most of the bright features around Pluto’s edge are a result of image processing, but the bright sliver below the dark “whale,” which is also visible in unprocessed images, is real.
Image of Charon only from the New Horizons’ Long Range Reconnaissance Imager (LORRI), July 8, 2015.
Credits: NASA-JHUAPL-SWRI
They’re a fascinating pair: Two icy worlds, spinning around their common center of gravity like a pair of figure skaters clasping hands. Scientists believe they were shaped by a cosmic collision billions of years ago, and yet, in many ways, they seem more like strangers than siblings.

A high-contrast array of bright and dark features covers Pluto’s surface, while on Charon, only a dark polar region interrupts a generally more uniform light gray terrain. The reddish materials that color Pluto are absent on Charon. Pluto has a significant atmosphere; Charon does not. On Pluto, exotic ices like frozen nitrogen, methane, and carbon monoxide have been found, while Charon’s surface is made of frozen water and ammonia compounds. The interior of Pluto is mostly rock, while Charon contains equal measures of rock and water ice.

“These two objects have been together for billions of years, in the same orbit, but they are totally different,” said Principal Investigator Alan Stern of the Southwest Research Institute (SwRI), Boulder, Colorado.

Charon is about 750 miles (1200 kilometers) across, about half the diameter of Pluto—making it the solar system’s largest moon relative to its planet. Its smaller size and lower surface contrast have made it harder for New Horizons to capture its surface features from afar, but the latest, closer images of Charon’s surface show intriguing fine details.

Newly revealed are brighter areas on Charon that members of the mission’s Geology, Geophysics and Imaging team (GGI) suspect might be impact craters. If so, the scientists would put them to good use. “If we see impact craters on Charon, it will help us see what’s hidden beneath the surface,” said GGI leader Jeff Moore of NASA’s Ames Research Center. “Large craters can excavate material from several miles down and reveal the composition of the interior.”

In short, said GGI deputy team leader John Spencer of SwRI, “Charon is now emerging as its own world. Its personality is beginning to really reveal itself.” 

NASA’s unmanned New Horizons spacecraft is closing in on the Pluto system after a more than nine-year, three-billion-mile journey. On July 14 it will zip past Pluto at 30,800 miles per hour (49,600 kilometers per hour), with a suite of seven science instruments busily gathering data. The mission will complete the initial reconnaissance of the solar system with the first-ever look at the icy dwarf planet.

Updates Daily



On January 19 2006, New Horizons Launched for Pluto


On Jan. 19, 2006, clouds part as NASA’s New Horizons spacecraft roars into the blue sky after an on-time liftoff at 2 p.m. EST aboard an Atlas V rocket from Complex 41 on Cape Canaveral Air Force Station in Florida. The compact, 1,050-pound piano-sized probe got a boost from a kick-stage solid propellant motor for its journey to Pluto.

New Horizons is intended to pass within 6,200 miles of Pluto, at about 7:50 a.m. EDT on July 14, 2015. The spacecraft will have a relative velocity of 30,800 mph at its approach and will come as close as 17,000 miles to Pluto's largest moon, Charon.

NASA will provide flyby coverage on NASA Television, the agency’s website and its social media accounts as the spacecraft closes in on Pluto in the coming days. The schedule for event coverage is subject to change, with daily updates posted online and in the New Horizons Media Center at APL.

Thursday 9 July 2015

A Heart From Pluto

After a more than nine-year, three-billion-mile journey to Pluto, it’s showtime for NASA’s New Horizons spacecraft, as the flyby sequence of science observations is officially underway.

In the early morning hours of July 8, mission scientists received this new view of Pluto—the most detailed yet returned by the Long Range Reconnaissance Imager (LORRI) aboard New Horizons. The image was taken on July 7, when the spacecraft was just under 5 million miles (8 million kilometers) from Pluto, and is the first to be received since the July 4 anomaly that sent the spacecraft into safe mode.

This view is centered roughly on the area that will be seen close-up during New Horizons’ July 14 closest approach. This side of Pluto is dominated by three broad regions of varying brightness. Most prominent are an elongated dark feature at the equator, informally known as “the whale,” and a large heart-shaped bright area measuring some 1,200 miles (2,000 kilometers) across on the right. Above those features is a polar region that is intermediate in brightness.

“The next time we see this part of Pluto at closest approach, a portion of this region will be imaged at about 500 times better resolution than we see today,” said Jeff Moore, Geology, Geophysics and Imaging Team leader of NASA’s Ames Research Center. “It will be incredible!”

Wednesday 8 July 2015

NuStar Stares At The Sun - Stargazer Nation

Flaring, active regions of our sun are highlighted in this new image combining observations from several telescopes. High-energy X-rays from NASA's Nuclear Spectroscopic Telescope Array (NuSTAR) are shown in blue; low-energy X-rays from Japan's Hinode spacecraft are green; and extreme ultraviolet light from NASA's Solar Dynamics Observatory (SDO) is yellow and red.

All three telescopes captured their solar images around the same time on April 29, 2015. The NuSTAR image is a mosaic made from combining smaller images.

The active regions across the sun’s surface contain material heated to several millions of degrees. The blue-white areas showing the NuSTAR data pinpoint the most energetic spots. During the observations, microflares went off, which are smaller versions of the larger flares that also erupt from the sun's surface. The microflares rapidly release energy and heat the material in the active regions.

NuSTAR typically stares deeper into the cosmos to observe X-rays from supernovas, black holes and other extreme objects. But it can also look safely at the sun and capture images of its high-energy X-rays with more sensitivity than before. Scientists plan to continue to study the sun with NuSTAR to learn more about microflares, as well as hypothesized nanoflares, which are even smaller.

In this image, the NuSTAR data shows X-rays with energies between 2 and 6 kiloelectron volts; the Hinode data, which is from the X-ray Telescope instrument, has energies of 0.2 to 2.4 kiloelectron volts; and the Solar Dynamics Observatory data, taken using the Atmospheric Imaging Assembly instrument, shows extreme ultraviolet light with wavelengths of 171 and 193 Angstroms.

Note the green Hinode image frame edge does not extend as far as the SDO ultraviolet image, resulting in the green portion of the image being truncated on the right and left sides.

New Horizons Map of Pluto: The Whale and the Donut

This map of Pluto, made from images taken by the LORRI instrument aboard New Horizons, shows a wide array of bright and dark markings of varying sizes and shapes. Perhaps most intriguing is the fact that all of the darkest material on the surface lies along Pluto’s equator. The color version was created from lower-resolution color data from the spacecraft’s Ralph instrument.
Credits: NASA-JHUAPL-SWRI

This is the latest map of Pluto created from images taken from June 27 to July 3 by the Long Range Reconnaissance Imager (LORRI) on New Horizons, combined with lower-resolution color data from the spacecraft’s Ralph instrument. The center of the map corresponds to the side of Pluto that will be seen close-up during New Horizons’ July 14 flyby.

This map gives mission scientists an important tool to decipher the complex and intriguing pattern of bright and dark markings on Pluto’s surface. Features from all sides of Pluto can now be seen at a glance and from a consistent perspective, making it much easier to compare their shapes and sizes.

The elongated dark area informally known as “the whale,” along the equator on the left side of the map, is one of the darkest regions visible to New Horizons. It measures some 1,860 miles (3,000 kilometers) in length.

Directly to the right of the whale’s “head” is the brightest region visible on the planet, which is roughly 990 miles (1,600 kilometers) across. This may be a region where relatively fresh deposits of frost—perhaps including frozen methane, nitrogen and/or carbon monoxide—form a bright coating.

Continuing to the right, along the equator, we see the four mysterious dark spots that have so intrigued the world, each of which is hundreds of miles across. Meanwhile, the whale’s “tail,” at the left end of the dark feature, cradles a bright donut-shaped feature about 200 miles (350 kilometers) across. At first glance it resembles circular features seen elsewhere in the solar system, from impact craters to volcanoes. But scientists are holding off on making any interpretation of this and other features on Pluto until more detailed images are in hand.

Of course, higher-resolution images in the days to come will allow mission scientists to make more accurate maps, but this map is a tantalizing preview.

“We’re at the ‘man in the moon’ stage of viewing Pluto,” said John Spencer of the Southwest Research Institute, Boulder, Colorado, deputy leader of the Geology, Geophysics and Imaging team. “It’s easy to imagine you’re seeing familiar shapes in this bizarre collection of light and dark features. However, it’s too early to know what these features really are.”
A Google Earth overlay of New Horizons' latest map of Pluto.

Tuesday 7 July 2015

NASA’s New Horizons on Track for Pluto Flyby

Science Operations to Resume for On Time Encounter

The recovery from a July 4 anomaly that sent the New Horizons spacecraft into safe mode is proceeding according to plan, with the mission team preparing to return to normal science operations on time July 7.

Mission managers reported during a July 6 media teleconference that NASA’s New Horizons spacecraft resumed operations on its main computer overnight. The sequence of commands for the Pluto flyby have now been uplinked to the spacecraft, and full, as planned science observations of Pluto, its moons and the solar winds will resume at 12:34 p.m. EDT July 7.

The quick response to the weekend computer glitch assures that the mission remains on track to conduct the entire close flyby sequence as planned, including the July 14 flyby observations of Pluto.

“We’re delighted with the New Horizons response to the anomaly,” said Jim Green, NASA’s director of planetary science. “Now we’re eager to get back to the science and prepare for the payoff that’s yet to come.”

The investigation into the anomaly that caused New Horizons to enter safe mode on July 4 has confirmed that the main computer was overloaded due to a timing conflict in the spacecraft command sequence. The computer was tasked with receiving a large command load at the same time it was engaged in compressing previous science data. The main computer responded precisely as it was programmed to do, by entering safe mode and switching to the backup computer.
 
Thirty observations were lost during the three-day recovery period, representing less than one percent of the total science that the New Horizons team hoped to collect between July 4 and July 16. None of the mission’s most critical observations were affected. There’s no risk that this kind of anomaly could happen again before flyby, as no similar operations are planned for the remainder of the Pluto encounter.

“This is a speed bump in terms of the total return we expect to receive from this historic mission,” said Dr. Alan Stern, New Horizons principal investigator with the Southwest Research Institute, Boulder, Colorado. “When we get a clear look at the surface of Pluto for the very first time, I promise, it will knock your socks off.”

The Johns Hopkins University Applied Physics Laboratory in Laurel, Maryland, designed, built, and operates the New Horizons spacecraft, and manages the mission for NASA's Science Mission Directorate. The Southwest Research Institute, based in San Antonio, leads the science team, payload operations and encounter science planning. New Horizons is part of the New Frontiers Program managed by NASA's Marshall Space Flight Center in Huntsville, Alabama.

Thursday 2 July 2015

New Horizons Update: Methane Detected; New Images of Pluto and Charon; Sunrise/Sunset Observations

The New Horizons spacecraft has made a critical observation in preparation for its upcoming observations of Pluto’s tenuous atmosphere. Just hours after its flyby of Pluto on July 14, the spacecraft will observe sunlight passing through the planet’s atmosphere, to help scientists determine the atmosphere’s composition. “It will be as if Pluto were illuminated from behind by a trillion-watt light bulb,” said Randy Gladstone, a New Horizons scientist from Southwest Research Institute, San Antonio. On June 16, New Horizons’ Alice ultraviolet imaging spectrograph successfully performed a test observation of the sun from 3.1 billion miles away (5 billion kilometers), which will be used to interpret the July 14 observations.

This spectrum of the Sun obtained by New Horizons’ Alice instrument will be used to interpret the spacecraft’s observations.
This spectrum of the Sun obtained by New Horizons’ Alice instrument on June 16, 2015, will be used to interpret the spacecraft’s upcoming observations of Pluto’s atmosphere.
Credits: Photo credit: NASA/Johns Hopkins Applied Physics Laboratory/Southwest Research Institute
New Horizons is now less than 11 million miles (18 million kilometers) from the Pluto system. The spacecraft is healthy and all systems are operating normally.
The Johns Hopkins University Applied Physics Laboratory in Laurel, Maryland, designed, built, and operates the New Horizons spacecraft, and manages the mission for NASA’s Science Mission Directorate. The Southwest Research Institute, based in San Antonio, leads the science team, payload operations and encounter science planning. New Horizons is part of the New Frontiers Program managed by NASA’s Marshall Space Flight Center in Huntsville, Alabama.

Yes, there is methane on Pluto, and, no, it doesn’t come from cows. The infrared spectrometer on NASA’s Pluto-bound New Horizons spacecraft has detected frozen methane on Pluto’s surface; Earth-based astronomers first observed the chemical compound on Pluto in 1976.

“We already knew there was methane on Pluto, but these are our first detections,” said Will Grundy, the New Horizons Surface Composition team leader with the Lowell Observatory in Flagstaff, Arizona. “Soon we will know if there are differences in the presence of methane ice from one part of Pluto to another.”

Methane (chemical formula CH4) is an odorless, colorless gas that is present underground and in the atmosphere on Earth. On Pluto, methane may be primordial, inherited from the solar nebula from which the solar system formed 4.5 billion years ago. Methane was originally detected on Pluto’s surface by a team of ground-based astronomers led by New Horizons team member Dale Cruikshank, of NASA’s Ames Research Center, Mountain View, California.

Come Fly with New Horizons on its Approach to Pluto
Images from New Horizons show the view from aboard the spacecraft closes in on the Pluto system for a July 14 flyby.

This time-lapse approach movie was made from images from the Long Range Reconnaissance Imager (LORRI) camera aboard New Horizons spacecraft taken between May 28 and June 25, 2015. During that time the spacecraft distance to Pluto decreased almost threefold, from about 35 million miles to 14 million miles (56 million kilometers to 22 million kilometers). The images show Pluto and its largest moon, Charon, growing in apparent size as New Horizons closes in. As it rotates, Pluto displays a strongly contrasting surface dominated by a bright northern hemisphere, with a discontinuous band of darker material running along the equator. Charon has a dark polar region, and there are indications of brightness variations at lower latitudes.


Saturday 27 June 2015

Stars of a Summer's Triangle

Rising at the start of a northern summer's night, these three bright stars form the familiar asterism known as the Summer Triangle. Altair, Deneb, and Vega are the alpha stars of their respective constellations, Aquila, Cygnus, and Lyra, nestled near the Milky Way. Close in apparent brightness the three do look similar in these telescopic portraits, but all have their own stellar stories. Their similar appearance hides the fact that the Summer Triangle stars actually span a large range in intrinsic luminosity and distance. A main sequence dwarf star, Altair is some 10 times brighter than the Sun and 17 light-years away, while Vega, also a hydrogen-fusing dwarf, is around 30 times brighter than the Sun and lies 25 light-years away. Supergiant Deneb, at about 54,000 times the solar luminosity, lies some 1,400 light-years distant. Of course, with a whitish blue hue, the stars of the Summer Triangle are all hotter than the Sun.

Thursday 25 June 2015

The Times Square Time Traveler - Rudolph Fentz Jumped to 1950 from 1876

In 1950, a man with mutton chop sideburns and Victorian-era duds popped up in Times Square. Witnesses said he looked startled, and then a minute later, he was hit by a car and killed.

The officials at the morgue searched his body and found the following items in his pockets:

A copper token for a beer worth 5 cents, bearing the name of a saloon, which was unknown, even to older residents of the area
A bill for the care of a horse and the washing of a carriage, drawn by a livery stable on Lexington Avenue that was not listed in any address book
About 70 dollars in old banknotes
Business cards with the name Rudolph Fentz and an address on Fifth Avenue
A letter sent to this address, in June 1876 from Philadelphia
None of these objects showed any signs of aging.

Captain Hubert V. Rihm of the Missing Persons Department of NYPD tried using this information to identify the man. He found that the address on Fifth Avenue was part of a business; its current owner did not know Rudolph Fentz. Fentz’s name was not listed in the address book, his fingerprints were not recorded anywhere, and no one had reported him missing.

Rihm continued the investigation and finally found a Rudolph Fentz Jr. in a telephone book of 1939. Rihm spoke to the residents of the apartment building at the listed address who remembered Fentz and described him as a man about 60 years who had worked nearby. After his retirement, he moved to an unknown location in 1940.

Contacting the bank, Rihm was told that Fentz died five years before, but his widow was still alive but lived in Florida. Rihm contacted her and learned that her husband’s father had disappeared in 1876 aged 29. He had left the house for an evening walk and never returned

The facts:

The story was published a number of times in the 70’s and 80’s as fact,  until 2000, after the Spanish magazine ‘Más Allá’ published a representation of the events as a factual report, folklore researcher Chris Aubeck investigated the description to check the veracity. His research led to the conclusion that the people and events of the story invented all were fictional, although he could not find the original source.

Pastor George Murphy claimed in 2002 that the original source was  from either a 1952 Robert Heinlein science fiction anthology, entitled ‘Tomorrow, The Stars’ or the Collier’s magazine from 15 September 1951. The true author was the renowned science fiction writer Jack Finney (1911–1995), and the Fentz episode was part of the short story I’m Scared, which was published in Collier’s first. This meant that the fictional character and the source of the story were finally identified – so everyone thought. No copies of the story have ever been found, and Finney died before he could be questioned.



The Twist

in 2007 a researcher working for the then Berlin News Archive, found a  newspaper story in the archives from April 1951 reporting the story almost as it reported today. This newspaper archive was printed some 5 months before the short story sourced as the origin.  Whats  even odder, a number of researchers have claimed to have found evidence of the real Rudolph Fentz, and proof of his disappearance aged 29 in 1876.

Tuesday 23 June 2015

New Horizons At The Pluto System

In a long series of images obtained by New Horizons’ telescopic Long Range Reconnaissance Imager (LORRI) May 29-June 19, Pluto and its largest moon, Charon, appear to more than double in size. From this rapidly improving imagery, scientists on the New Horizons team have found that the “close approach hemisphere” on Pluto that New Horizons will fly over has the greatest variety of terrain types seen on the planet so far. They have also discovered that Charon has a “dark pole” – a mysterious dark region that forms a kind of anti-polar cap.

"This system is just amazing," said Alan Stern, New Horizons Principal Investigator, from the Southwest Research Institute, Boulder, Colorado. "The science team is just ecstatic with what we see on Pluto’s close approach hemisphere: Every terrain type we see on the planet—including both the brightest and darkest surface areas —are represented there, it’s a wonderland!

"And about Charon—wow—I don’t think anyone expected Charon to reveal a mystery like dark terrains at its pole," he continued. "Who ordered that?"

These images, taken by New Horizons' Long Range Reconnaissance Imager (LORRI), show numerous large-scale features on Pluto's surface. When various large, dark and bright regions appear near limbs, they give Pluto a distinct, but false, non-spherical appearance. Pluto is known to be almost perfectly spherical from previous data. These images are displayed at four times the native LORRI image size, and have been processed using a method called deconvolution, which sharpens the original images to enhance features on Pluto.
Credits: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute
New Horizons scientists use a technique called deconvolution to sharpen the raw, unprocessed pictures that the spacecraft beams back to Earth; the contrast in these latest images has also been stretched to bring out additional details. Deconvolution can occasionally produce artifacts, so the team will be carefully reviewing newer images taken from closer range to determine whether some of the tantalizing details seen in these images persist. Pluto’s non-spherical appearance in these images is not real; it results from a combination of the image-processing technique and Pluto’s large variations in surface brightness.

"The unambiguous detection of bright and dark terrain units on both Pluto and Charon indicates a wide range of diverse landscapes across the pair," said science team co-investigator and imaging lead Jeff Moore, of NASA Ames Research Center, Mountain View, California. “For example, the bright fringe we see on Pluto may represent frost deposited from an evaporating polar cap, which is now in summer sun.”


These recent images show the discovery of significant surface details on Pluto’s largest moon, Charon. They were taken by the New Horizons Long Range Reconnaissance Imager (LORRI) on June 18, 2015. The image on the left is the original image, displayed at four times the native LORRI image size. After applying a technique that sharpens an image called deconvolution, details become visible on Charon, including a distinct dark pole. Deconvolution can occasionally introduce "false" details, so the finest details in these pictures will need to be confirmed by images taken from closer range in the next few weeks.
Credits: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute
New Horizons is approximately 2.9 billion miles (4.7 billion kilometers) from Earth and just 16 million miles (25 million kilometers) from Pluto. The spacecraft and payload are in good health and operating normally.